
Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

An overview of fault-tolerant techniques for HPC

Yves Robert

ENS Lyon & Institut Universitaire de France
University of Tennessee Knoxville

yves.robert@ens-lyon.fr

http://graal.ens-lyon.fr/~yrobert/keynote-ic3-delhi2013.pdf

P2S2 Keynote – October 1, 2013

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 1/ 98

yves.robert@ens-lyon.fr
http://graal.ens-lyon.fr/~yrobert/keynote-ic3-delhi2013.pdf

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 ABFT for dense linear algebra kernels

3 Checkpointing
Process checkpointing
Coordinated checkpointing
Young/Daly’s approximation

4 Probabilistic models for checkpointing
Coordinated checkpointing
Hierarchical checkpointing

5 Other techniques
Replication
Failure Prediction
Silent errors
In-memory checkpointing

6 Conclusion

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 2/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Thanks ...

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 3/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 ABFT for dense linear algebra kernels

3 Checkpointing
Process checkpointing
Coordinated checkpointing
Young/Daly’s approximation

4 Probabilistic models for checkpointing
Coordinated checkpointing
Hierarchical checkpointing

5 Other techniques
Replication
Failure Prediction
Silent errors
In-memory checkpointing

6 Conclusion

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 4/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 ABFT for dense linear algebra kernels

3 Checkpointing
Process checkpointing
Coordinated checkpointing
Young/Daly’s approximation

4 Probabilistic models for checkpointing
Coordinated checkpointing
Hierarchical checkpointing

5 Other techniques
Replication
Failure Prediction
Silent errors
In-memory checkpointing

6 Conclusion

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 5/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Exascale platforms (courtesy J. Dongarra)

Potential System Architecture
with a cap of $200M and 20MW
 Systems 2011

K computer
2019 Difference

Today & 2019

System peak 10.5 Pflop/s 1 Eflop/s O(100)

Power 12.7 MW ~20 MW

System memory 1.6 PB 32 - 64 PB O(10)

Node performance 128 GF 1,2 or 15TF O(10) – O(100)

Node memory BW 64 GB/s 2 - 4TB/s O(100)

Node concurrency 8 O(1k) or 10k O(100) – O(1000)

Total Node Interconnect BW 20 GB/s 200-400GB/s O(10)

System size (nodes) 88,124 O(100,000) or O(1M) O(10) – O(100)

Total concurrency 705,024 O(billion) O(1,000)

MTTI days O(1 day) - O(10)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 6/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Exascale platforms (courtesy C. Engelmann & S. Scott)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 7/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Exascale platforms

Hierarchical
• 105 or 106 nodes
• Each node equipped with 104 or 103 cores

Failure-prone

MTBF – one node 1 year 10 years 120 years
MTBF – platform 30sec 5mn 1h

of 106 nodes

More nodes ⇒ Shorter MTBF (Mean Time Between Failures)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 8/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Exascale platforms

Hierarchical
• 105 or 106 nodes
• Each node equipped with 104 or 103 cores

Failure-prone

MTBF – one node 1 year 10 years 120 years
MTBF – platform 30sec 5mn 1h

of 106 nodes

More nodes ⇒ Shorter MTBF (Mean Time Between Failures)

Exascale

6= Petascale ×1000

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 8/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Even for today’s platforms (courtesy F. Cappello)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 9/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Even for today’s platforms (courtesy F. Cappello)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 10/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 ABFT for dense linear algebra kernels

3 Checkpointing
Process checkpointing
Coordinated checkpointing
Young/Daly’s approximation

4 Probabilistic models for checkpointing
Coordinated checkpointing
Hierarchical checkpointing

5 Other techniques
Replication
Failure Prediction
Silent errors
In-memory checkpointing

6 Conclusion

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 11/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Error sources (courtesy Franck Cappello)

•  Analysis of error and failure logs

•  In 2005 (Ph. D. of CHARNG-DA LU) : “Software halts account for the most number of
outages (59-84 percent), and take the shortest time to repair (0.6-1.5 hours). Hardware
problems, albeit rarer, need 6.3-100.7 hours to solve.”

•  In 2007 (Garth Gibson, ICPP Keynote):

•  In 2008 (Oliner and J. Stearley, DSN Conf.):
50%

Hardware

Conclusion: Both Hardware and Software failures have to be considered

Software errors: Applications, OS bug (kernel panic), communication libs, File system error and other.

Hardware errors, Disks, processors, memory, network

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 12/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

A few definitions

Many types of faults: software error, hardware malfunction,
memory corruption

Many possible behaviors: silent, transient, unrecoverable

Restrict to faults that lead to application failures

This includes all hardware faults, and some software ones

Will use terms fault and failure interchangeably

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 13/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Failure distributions: (1) Exponential

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

F
a

ilu
re

 P
ro

b
a

b
ili

ty

Time (years)

Sequential Machine

Exp(1/100)

Exp(λ): Exponential distribution law of parameter λ:

Pdf: f (t) = λe−λtdt for t ≥ 0

Cdf: F (t) = 1− e−λt

Mean = 1
λ

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 14/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Failure distributions: (1) Exponential

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

F
a

ilu
re

 P
ro

b
a

b
ili

ty

Time (years)

Sequential Machine

Exp(1/100)

X random variable for Exp(λ) failure inter-arrival times:

P (X ≤ t) = 1− e−λtdt (by definition)

Memoryless property: P (X ≥ t + s |X ≥ s) = P (X ≥ t)
at any instant, time to next failure does not depend upon
time elapsed since last failure

Mean Time Between Failures (MTBF) µ = E (X) = 1
λ

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 14/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Failure distributions: (2) Weibull

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

F
a

ilu
re

 P
ro

b
a

b
ili

ty

Time (years)

Sequential Machine

Exp(1/100)
Weibull(0.7, 1/100)
Weibull(0.5, 1/100)

Weibull(k, λ): Weibull distribution law of shape parameter k and
scale parameter λ:

Pdf: f (t) = kλ(tλ)k−1e−(λt)k dt for t ≥ 0

Cdf: F (t) = 1− e−(λt)k

Mean = 1
λΓ(1 + 1

k)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 15/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Failure distributions: (2) Weibull

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

F
a

ilu
re

 P
ro

b
a

b
ili

ty

Time (years)

Sequential Machine

Exp(1/100)
Weibull(0.7, 1/100)
Weibull(0.5, 1/100)

X random variable for Weibull(k , λ) failure inter-arrival times:

If k < 1: failure rate decreases with time
”infant mortality”: defective items fail early

If k = 1: Weibull(1, λ) = Exp(λ) constant failure time

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 15/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Failure distributions: with several processors

Processor (or node): any entity subject to failures
⇒ approach agnostic to granularity

If the MTBF is µ with one processor,
what is its value µp with p processors?

Well, it depends /

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 16/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Failure distributions: with several processors

Processor (or node): any entity subject to failures
⇒ approach agnostic to granularity

If the MTBF is µ with one processor,
what is its value µp with p processors?

Well, it depends /

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 16/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

With rejuvenation

Rebooting all p processors after a failure

Platform failure distribution
⇒ minimum of p IID processor distributions

With p distributions Exp(λ):

min
(
Exp(λ1),Exp(λ2)

)
= Exp(λ1 + λ2)

µ =
1

λ
⇒ µp =

µ

p

With p distributions Weibull(k, λ):

min
1..p

(
Weibull(k , λ)

)
= Weibull(k , p1/kλ)

µ =
1

λ
Γ(1 +

1

k
)⇒ µp =

µ

p1/k

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 17/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Without rejuvenation (= real life)

Rebooting only faulty processor

Platform failure distribution
⇒ superposition of p IID processor distributions

Theorem: µp =
µ

p
for arbitrary distributions

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 18/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Values from the literature

MTBF of one processor: between 1 and 125 years

Shape parameters for Weibull: k = 0.5 or k = 0.7

Failure trace archive from INRIA
(http://fta.inria.fr)

Computer Failure Data Repository from LANL
(http://institutes.lanl.gov/data/fdata)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 19/ 98

http://fta.inria.fr
http://institutes.lanl.gov/data/fdata

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Does it matter?

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0h 3h 6h 9h 12h 15h 18h 21h 24h

F
a

ilu
re

 P
ro

b
a

b
ili

ty

Time (hours)

Parallel machine (10
6
 nodes)

Exp(1/100)
Weibull(0.7, 1/100)
Weibull(0.5, 1/100)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 20/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 ABFT for dense linear algebra kernels

3 Checkpointing
Process checkpointing
Coordinated checkpointing
Young/Daly’s approximation

4 Probabilistic models for checkpointing
Coordinated checkpointing
Hierarchical checkpointing

5 Other techniques
Replication
Failure Prediction
Silent errors
In-memory checkpointing

6 Conclusion

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 21/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Tiled LU factorization

A A'

U

L

U

Solve A · x = b (hard)

Transform A into a LU factorization

Solve L · y = B · b, then U · x = y

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 22/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Tiled LU factorization

A A'

U

L

U

GETF2: factorize a
column block

TRSM - Update row block

GEMM: Update
the trailing

matrix

Solve A · x = b (hard)

Transform A into a LU factorization

Solve L · y = B · b, then U · x = y

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 22/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Tiled LU factorization

L

U U

L

U

GETF2: factorize a
column block

TRSM - Update row block

GEMM: Update
the trailing

matrix

L

U

Solve A · x = b (hard)

Transform A into a LU factorization

Solve L · y = B · b, then U · x = y

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 22/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Tiled LU factorization

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

0 2
1 3
0 2
1 3
0 2
1 3
0 2
1 3

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

0 2
1 3
0 2
1 3
0 2
1 3
0 2
1 3

Failure of rank 2

2D Block Cyclic Distribution (here 2× 3)

A single failure ⇒ many data lost

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 22/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Algorithm Based Fault Tolerant LU decomposition

M

P mb

nb
Q

N
N/Q

+
+
+

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

Checksum: invertible operation on row/column data

Checksum replication avoided by dedicating additional
computing resources to checksum storage

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 23/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Algorithm Based Fault Tolerant LU decomposition

M

P
mb

nb
Q

N
< 2N/Q + nb

+
+
+

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

Checksum: invertible operation on row/column data

Checksum blocks are doubled, to allow recovery when data
and checksum are lost together (no extra resource needed)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 23/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Algorithm Based Fault Tolerant LU decomposition

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

GETF2 GEMM

TRSM

Checksum: invertible operation on row/column data

Key idea of ABFT: applying the operation on data and
checksum preserves the checksum properties

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 23/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Performance

0"

5"

10"

15"

20"

25"

30"

0"

10"

20"

30"

40"

50"

60"

20k"(6x6)" 40k"(12x12)" 80k"(24x24)" 160k"(48x48)" 320k"(96x96)" 640k"(192x192)"

Tfl
op

/s
'O
ve
rh
ea
d'
(%

)'

Pe
rf
or
m
an

ce
'(T

flo
p/
s)
'

Matrix'size'(grid'size)'

FT1LU"performance" Non1FT"LU"performance" Overhead"

Figure 8. Weak scalability of FT-LU: performance and overhead
on Kraken, compared to non fault tolerant LU

fault tolerance aspects, for example generating checksum, check-
pointing and recovery. An efficient and scalable algorithm will in-
cur a minimal overhead over the original algorithm while protecting
the data against failures.

We use the NICS Kraken supercomputer hosted at the Oak
Ridge National Laboratory as our testing platform. This machine
features 112,896 2.6GHz AMD Opteron cores with the Seastar in-
terconnect. At the software level, to serve as a comparison base, we
use the non fault tolerant ScaLAPACK LU and QR in double pre-
cision with block size NB = 100. The fault tolerance functions are
implemented and plugged in directly into ScaLAPACK routines.

In this section, we first evaluate the storage overhead in the form
of extra memory usage, then show experimental result on Kraken
to assess the computational overhead.

6.1 Storage Overhead
Checksum takes extra storage (memory) on each process, and on
large scale systems memory usage is normally maximized for com-
puting tasks. Therefore, it is preferable to have a small ratio of
checksum size over matrix size, in order to minimize the impact
on the memory available to the application itself. For the sake of
simplicity, and because of the small impact in term of memory us-
age, neither the pivoting vector nor the column shift are considered
in this evaluation.

Different protection algorithms require different amounts of
memory. In the following, we consider the duplication algorithm
presented in Section 4.5.2 for computing the upper memory bound.
The storage of the checksum includes the row-wise and column-
wise checksums and a small portion at the bottom-right corner.

For an input matrix of size M ⇥N on a P ⇥Q process grid, the
memory used for checksum (including duplicates) is M ⇥ N

Q
⇥ 2.

The ratio Rmem of checksum memory over the memory of the
input matrix, equals to 2

Q
, becomes negligible with the increase

in the number of processes used for the computation.

6.2 Overhead without Failures
Figure 8 evaluates the completion time overhead and performance,
using the LU factorization routine PDGETRF. The performance of
both the original and fault tolerant version is reported in Tflop/s.
This experiment is carried out to test the weak scalability where
both the matrix and grid dimension doubles. The result shows that
as the problem size and grid size increases, the overhead drops
quickly and eventually becomes negligible. At the matrix size of
640, 000 ⇥ 640, 000 on 36, 864 (192 ⇥ 192) cores, both versions

0"

5"

10"

15"

20"

25"

30"

35"

40"

45"

50"

20k"(6x6)" 40k"(12x12)" 80k"(24x24)" 160k"(48x48)"

Ru
n$
%m

e$
ov
er
he

ad
$(%

)$

Matrix$size$(grid$size)$

Failure"on"Q"panels"border"

Failure"within"Q"panels"

No"error"

Figure 9. Weak scalability of FT-LU: run time overhead on
Kraken when failures strike at different steps

achieved over 48Tflop/s, with an overhead of 0.016% for the ABFT
algorithm. As a side experiment, we implemented the naive vertical
checkpointing method discussed in section 5.2, and as expected the
measured overhead quickly exceed 100%.

As the left factor is touched only once during the computation,
the approach of checkpointing the result of a panel synchronously
can, a-priori, look sound when compared to system based check-
point, where the entire dataset is checkpointed periodically. How-
ever, as the checkpointing of a particular panel suffers from its in-
ability to exploit the full parallelism of the platform, it is subject
to a derivative of Amdahl’s law, where its importance is bound to
grow when the number of computing resources increases. Its par-
allel efficiency is bound by P, while the overall computation enjoys
a P ⇥ Q parallel efficiency. As a consequence, in the experiments,
the time to compute the naive checkpoint dominates the compu-
tation time. On the other hand, the hybrid checkpointing approach
exchanges the risk of a Q-step rollback with the opportunity to ben-
efit from a P ⇥ Q parallel efficiency for the panel checkpointing.
Because of this improved parallel efficiency, the hybrid checkpoint-
ing approach benefits from a competitive level of performance, that
follows the same trend as the original non fault tolerant algorithm.

6.3 Recovery Cost
In addition to the “curb” overhead of fault tolerance functions, the
recovery from failure adds extra overhead to the host algorithm.
There are two cases for the recovery. The first one is when failure
occurs right after the reverse neighboring checkpointing of Q pan-
els. At this moment the matrix is well protected by the checksum
and therefore the lost data can be recovered directly from the check-
sum. We refer to this case as “failure on Q panels border”. The sec-
ond case is when the failure occurs during the reverse neighboring
checkpointing and therefore local snapshots have to be used along
with re-factorization to recover the lost data and restore the matrix
state. This is referred to as the ”failure within Q panels”.

Figure 9 shows the overhead from this two cases for LU fac-
torization, along with the no-error overhead for reference. In the
“border” case, the failure is simulated to strike when the 96th

panel (which, in another word, is a multiple of grid columns,
6, 12, · · · , 48) has just finished. In the “non-border” case, failure
occurs during the (Q+2)th panel factorization. For example, when
Q = 12, the failure is injected when the trailing update for the step
with panel (1301,1301) finishes. From the result in Figure 9, the
recovery procedure in both cases adds a small overhead that also
decreases when scaled to large problem size and process grid. At

9 2011/8/19

MPI-Next ULFM Performance

Open MPI with ULFM; Kraken supercomputer;

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 24/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 ABFT for dense linear algebra kernels

3 Checkpointing
Process checkpointing
Coordinated checkpointing
Young/Daly’s approximation

4 Probabilistic models for checkpointing
Coordinated checkpointing
Hierarchical checkpointing

5 Other techniques
Replication
Failure Prediction
Silent errors
In-memory checkpointing

6 Conclusion

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 25/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 ABFT for dense linear algebra kernels

3 Checkpointing
Process checkpointing
Coordinated checkpointing
Young/Daly’s approximation

4 Probabilistic models for checkpointing
Coordinated checkpointing
Hierarchical checkpointing

5 Other techniques
Replication
Failure Prediction
Silent errors
In-memory checkpointing

6 Conclusion

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 26/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Maintaining Redundant Information

Goal

General Purpose Fault Tolerance Techniques: work despite
application behavior

Two adversaries: Failures & Application

Use automatically computed redundant information

At given instants: checkpoint
At any instant: replication
Anything in between: checkpoint + message logging

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 27/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Process Checkpointing

Goal

Save the current state of the process

FT Protocols save a possible state of the parallel application

Techniques

User-level checkpointing

System-level checkpointing

Blocking call

Asynchronous call

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 28/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

System-level checkpointing

Blocking Checkpointing

Relatively intuitive: checkpoint(filename)

Cost: no process activity during whole checkpoint operation

Different implementations: OS syscall; dynamic library;
compiler assisted

Create a serial file that can be loaded in a process image.
Usually on same architecture / OS / software environment

Entirely transparent

Preemptive (often needed for library-level checkpointing)

Lack of portability

Large size of checkpoint (≈ memory footprint)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 29/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Storage

Remote Reliable Storage

Intuitive. I/O intensive. Disk usage.

Memory Hierarchy

local memory

local disk (SSD, HDD)

remote disk

Scalable Checkpoint Restart Library
http://scalablecr.sourceforge.net

Checkpoint is valid when finished on reliable storage

Distributed Memory Storage

In-memory checkpointing

Disk-less checkpointing

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 30/ 98

http://scalablecr.sourceforge.net

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 ABFT for dense linear algebra kernels

3 Checkpointing
Process checkpointing
Coordinated checkpointing
Young/Daly’s approximation

4 Probabilistic models for checkpointing
Coordinated checkpointing
Hierarchical checkpointing

5 Other techniques
Replication
Failure Prediction
Silent errors
In-memory checkpointing

6 Conclusion

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 31/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Coordinated checkpointing

orphan

orphan

missing

Definition (Missing Message)

A message is missing if in the current configuration, the sender
sent it, while the receiver did not receive it

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 32/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Coordinated checkpointing

orphan

orphan

missing

Definition (Orphan Message)

A message is orphan if in the current configuration, the receiver
received it, while the sender did not send it

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 33/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Coordinated checkpointing

Create a consistent view of the application (no orphan messages)

Messages belong to a checkpoint wave or another

All communication channels must be flushed (all2all)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 34/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Coordinated checkpointing

App. Message Marker Message

Silences the network during checkpoint

Missing messages recorded

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 35/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 ABFT for dense linear algebra kernels

3 Checkpointing
Process checkpointing
Coordinated checkpointing
Young/Daly’s approximation

4 Probabilistic models for checkpointing
Coordinated checkpointing
Hierarchical checkpointing

5 Other techniques
Replication
Failure Prediction
Silent errors
In-memory checkpointing

6 Conclusion

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 36/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Checkpointing cost

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working

Blocking model: while a checkpoint is taken, no computation can
be performed

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 37/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Framework

Periodic checkpointing policy of period T

Independent and identically distributed failures

Applies to a single processor with MTBF µ = µind
Applies to a platform with p processors with MTBF µ = µind

p

coordinated checkpointing
tightly-coupled application
progress ⇔ all processors available

Waste: fraction of time not spent for useful computations

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 38/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Waste in fault-free execution

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working Timebase: application base time

TimeFF: with periodic checkpoints
but failure-free

TimeFF = Timebase + #checkpoints × C

#checkpoints =

⌈
Timebase

T − C

⌉
≈ Timebase

T − C
(valid for large jobs)

Waste[FF] =
TimeFF −Timebase

TimeFF
=

C

T

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 39/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Waste due to failures

Timebase: application base time

TimeFF: with periodic checkpoints but failure-free

Timefinal: expectation of time with failures

Timefinal = TimeFF + Nfaults × Tlost

Nfaults number of failures during execution
Tlost: average time lost par failures

Nfaults =
Timefinal

µ

Tlost?

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 40/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Waste due to failures

Timebase: application base time

TimeFF: with periodic checkpoints but failure-free

Timefinal: expectation of time with failures

Timefinal = TimeFF + Nfaults × Tlost

Nfaults number of failures during execution
Tlost: average time lost par failures

Nfaults =
Timefinal

µ

Tlost?

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 40/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Computing Tlost

T

CT − CRDTlost

P1

P0

P3

P2

Time spent working Time spent checkpointing

Recovery timeDowntime Time

Tlost = D + R +
T

2

⇒ Instants when periods begin and failures strike are independent
⇒ Valid for all distribution laws, regardless of their particular shape

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 41/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Waste due to failures

Timefinal = TimeFF + Nfaults × Tlost

Waste[fail] =
Timefinal −TimeFF

Timefinal
=

1

µ

(
D + R +

T

2

)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 42/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Total waste

TimeFF =TimeFinal (1-Waste[Fail]) TimeFinal ×Waste[Fail]

TimeFinal

T -C C T -C C T -C C T -C C T -C C

Waste =
Timefinal −Timebase

Timefinal

1−Waste = (1−Waste[FF])(1−Waste[fail])

Waste =
C

T
+

(
1− C

T

)
1

µ

(
D + R +

T

2

)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 43/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Waste minimization

Waste =
C

T
+

(
1− C

T

)
1

µ

(
D + R +

T

2

)
Waste =

u

T
+ v + wT

u = C
(
1− D + R

µ

)
v =

D + R − C/2

µ
w =

1

2µ

Waste minimized for T =
√

u
w

T =
√

2(µ− (D + R))C

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 44/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Comparison with Young/Daly

TimeFF =TimeFinal (1-Waste[Fail]) TimeFinal ×Waste[Fail]

TimeFinal

T -C C T -C C T -C C T -C C T -C C

(
1−Waste[fail]

)
Timefinal = TimeFF

⇒ T =
√

2(µ− (D + R))C

Daly: Timefinal =
(
1 + Waste[fail]

)
TimeFF

⇒ T =
√

2(µ+ (D + R))C + C

Young: Timefinal =
(
1 + Waste[fail]

)
TimeFF and D = R = 0

⇒ T =
√

2µC + C

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 45/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Validity of the approach (1/3)

Technicalities

E (Nfaults) = Timefinal
µ and E (Tlost) = D + R + T

2
but expectation of product is not product of expectations
(not independent RVs here)

Enforce C ≤ T to get Waste[FF] ≤ 1

Enforce D + R ≤ µ and bound T to get Waste[fail] ≤ 1
but µ = µind

p too small for large p, regardless of µind

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 46/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Validity of the approach (2/3)

Several failures within same period?

Waste[fail] accurate only when two or more faults do not
take place within same period

Cap period: T ≤ γµ, where γ is some tuning parameter

Poisson process of parameter θ = T
µ

Probability of having k ≥ 0 failures : P(X = k) = θk

k! e−θ

Probability of having two or more failures:
π = P(X ≥ 2) = 1− (P(X = 0) + P(X = 1)) = 1− (1 +θ)e−θ

γ = 0.27 ⇒ π ≤ 0.03
⇒ overlapping faults for only 3% of checkpointing segments

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 47/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Validity of the approach (3/3)

Enforce T ≤ γµ, C ≤ γµ, and D + R ≤ γµ

Optimal period
√

2(µ− (D + R))C may not belong to
admissible interval [C , γµ]

Waste is then minimized for one of the bounds of this
admissible interval (by convexity)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 48/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Wrap up

Capping periods, and enforcing a lower bound on MTBF
⇒ mandatory for mathematical rigor /

Not needed for practical purposes ,
• actual job execution uses optimal value
• account for multiple faults by re-executing work until success

Approach surprisingly robust ,

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 49/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 ABFT for dense linear algebra kernels

3 Checkpointing
Process checkpointing
Coordinated checkpointing
Young/Daly’s approximation

4 Probabilistic models for checkpointing
Coordinated checkpointing
Hierarchical checkpointing

5 Other techniques
Replication
Failure Prediction
Silent errors
In-memory checkpointing

6 Conclusion

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 50/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 ABFT for dense linear algebra kernels

3 Checkpointing
Process checkpointing
Coordinated checkpointing
Young/Daly’s approximation

4 Probabilistic models for checkpointing
Coordinated checkpointing
Hierarchical checkpointing

5 Other techniques
Replication
Failure Prediction
Silent errors
In-memory checkpointing

6 Conclusion

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 51/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Background: coordinated checkpointing protocols

Coordinated checkpoints over all
processes

Global restart after a failure

P0

P1

P2

m1 m2 m3

m4 m5

, No risk of cascading rollbacks

, No need to log messages

/ All processors need to roll back

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 52/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Background: message logging protocols

Message content logging
(sender memory)

Restart of failed process only

P0

P1

P2

m1 m2 m3

m4 m5

, No cascading rollbacks

, Number of processes to roll back

/ Memory occupation

/ Overhead

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 53/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Background: hierarchical protocols

Clusters of processes

Coordinated checkpointing
protocol within clusters

Message logging protocols
between clusters

Only processors from failed group
need to roll back

P0

P1

P2

P3

m1

m2

m3

m4

m5

/ Need to log inter-groups messages
• Slowdowns failure-free execution
• Increases checkpoint size/time

, Faster re-execution with logged messages

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 54/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Which checkpointing protocol to use?

Coordinated checkpointing

, No risk of cascading rollbacks

, No need to log messages

/ All processors need to roll back

/ Rumor: May not scale to very large platforms

Hierarchical checkpointing

/ Need to log inter-groups messages
• Slowdowns failure-free execution
• Increases checkpoint size/time

, Only processors from failed group need to roll back

, Faster re-execution with logged messages

, Rumor: Should scale to very large platforms

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 55/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Coordinated checkpointing

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working

Blocking model: checkpointing blocks all computations

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 56/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Coordinated checkpointing

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunk

Processing the first chunk

Time

Time spent checkpointing

Time spent working

Non-blocking model: checkpointing has no impact on
computations (e.g., first copy state to RAM, then copy RAM to
disk)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 56/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Coordinated checkpointing

Checkpointing

the first chunk

Computing the first chunk

Processing the first chunk

Time

Time spent working

Time spent checkpointing

Time spent working with slowdown

General model: checkpointing slows computations down: during
a checkpoint of duration C , the same amount of computation is
done as during a time αC without checkpointing (0 ≤ α ≤ 1)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 56/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Waste in fault-free execution

T

CT − C

P1

P0

P3

P2

Time spent working Time spent checkpointing Time spent working with slowdown

Time

Time elapsed since last checkpoint: T

Amount of computations executed: Work = (T − C) + αC

Waste[FF] = T−Work
T

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 57/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Waste due to failures

P0

P3

P2

P1

Time spent checkpointingTime spent working Time spent working with slowdown

Time

Failure can happen

1 During computation phase

2 During checkpointing phase

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 57/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Waste due to failures

P2

P1

P3

P0

Time spent working Time spent checkpointing Time spent working with slowdown

Time

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 57/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Waste due to failures

P2

P1

P3

P0

Time spent working Time spent checkpointing Time spent working with slowdown

Time

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 57/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Waste due to failures

Tlost

P1

P3

P0

P2

Time spent working Time spent checkpointing Time spent working with slowdown

Time

Coordinated checkpointing protocol: when one processor is victim
of a failure, all processors lose their work and must roll back to last
checkpoint

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 57/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Waste due to failures in computation phase

D

P0

P2

P1

P3

Time spent working Time spent checkpointing Time spent working with slowdown

Downtime Time

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 57/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Waste due to failures in computation phase

R

P2

P1

P3

P0

Time spent checkpointingTime spent working Time spent working with slowdown

Recovery timeDowntime Time

Coordinated checkpointing protocol: all processors must recover
from last checkpoint

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 57/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Waste due to failures in computation phase

C αC

P3

P2

P1

P0

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

Redo the work destroyed by the failure, that was done in the
checkpointing phase before the computation phase

But no checkpoint is taken in parallel, hence this re-execution is
faster than the original computation

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 57/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Waste due to failures in computation phase

T − C

P1

P0

P3

P2

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

Re-execute the computation phase

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 57/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Waste due to failures in computation phase

C

P3

P2

P1

P0

Time spent checkpointingTime spent working Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

Finally, the checkpointing phase is executed

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 57/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Total waste

∆

αC CT − CRDTlost

P0

P2

P1

P3

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime

T

Time

Waste[fail] =
1

µ

(
D + R + αC +

T

2

)
Optimal period Topt =

√
2(1− α)C (µ− (D + R + αC))

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 57/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 ABFT for dense linear algebra kernels

3 Checkpointing
Process checkpointing
Coordinated checkpointing
Young/Daly’s approximation

4 Probabilistic models for checkpointing
Coordinated checkpointing
Hierarchical checkpointing

5 Other techniques
Replication
Failure Prediction
Silent errors
In-memory checkpointing

6 Conclusion

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 58/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Hierarchical checkpointing

T

α(G−g+1)C

RD G .C

T−G .C−Tlost

TlostTlost

G2

G4

Gg

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Processors partitioned into G groups

Each group includes q processors

Inside each group: coordinated checkpointing in time C (q)

Inter-group messages are logged

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 59/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Accounting for message logging: Impact on work

/ Logging messages slows down execution:
⇒ Work becomes λWork, where 0 < λ < 1
Typical value: λ ≈ 0.98

, Re-execution after a failure is faster:
⇒ Re-Exec becomes Re-Exec

ρ , where ρ ∈ [1..2]
Typical value: ρ ≈ 1.5

Waste[FF] =
T − λWork

T

Waste[fail] =
1

µ

(
D(q) + R(q) +

Re-Exec

ρ

)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 60/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Accounting for message logging: Impact on checkpoint size

Inter-groups messages logged continuously

Checkpoint size increases with amount of work executed
before a checkpoint /
C0(q): Checkpoint size of a group without message logging

C (q) = C0(q)(1 + βWork)⇔ β =
C (q)− C0(q)

C0(q)Work

Work = λ(T − (1− α)GC (q))

C (q) =
C0(q)(1 + βλT)

1 + GC0(q)βλ(1− α)

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 61/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Three case studies

Coord-IO
Coordinated approach: C = CMem = Mem

bio

where Mem is the memory footprint of the application

Hierarch-IO
Several (large) groups, I/O-saturated
⇒ groups checkpoint sequentially

C0(q) =
CMem

G
=

Mem

G bio

Hierarch-Port
Very large number of smaller groups, port-saturated
⇒ some groups checkpoint in parallel
Groups of qmin processors, where qminbport ≥ bio

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 62/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Three applications

1 2D-stencil

2 Matrix product
3 3D-Stencil

Plane
Line

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 63/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Computing β for 2D-Stencil

C (q) = C0(q) + Logged Msg = C0(q)(1 + βWork)

Real n × n matrix and p × p grid
Work = 9b2

sp
, b = n/p

Each process sends a block to its 4 neighbors

Hierarch-IO:

1 group = 1 grid row

2 out of the 4 messages are logged

β =
2sp
9b3

Hierarch-Port:

β doubles

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 64/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Four platforms: basic characteristics

Name Number of Number of Number of cores Memory I/O Network Bandwidth (bio) I/O Bandwidth (bport)
cores processors ptotal per processor per processor Read Write Read/Write per processor

Titan 299,008 16,688 16 32GB 300GB/s 300GB/s 20GB/s
K-Computer 705,024 88,128 8 16GB 150GB/s 96GB/s 20GB/s

Exascale-Slim 1,000,000,000 1,000,000 1,000 64GB 1TB/s 1TB/s 200GB/s
Exascale-Fat 1,000,000,000 100,000 10,000 640GB 1TB/s 1TB/s 400GB/s

Name Scenario G (C (q)) β for β for
2D-Stencil Matrix-Product

Coord-IO 1 (2,048s) / /
Titan Hierarch-IO 136 (15s) 0.0001098 0.0004280

Hierarch-Port 1,246 (1.6s) 0.0002196 0.0008561

Coord-IO 1 (14,688s) / /
K-Computer Hierarch-IO 296 (50s) 0.0002858 0.001113

Hierarch-Port 17,626 (0.83s) 0.0005716 0.002227

Coord-IO 1 (64,000s) / /
Exascale-Slim Hierarch-IO 1,000 (64s) 0.0002599 0.001013

Hierarch-Port 200,0000 (0.32s) 0.0005199 0.002026

Coord-IO 1 (64,000s) / /
Exascale-Fat Hierarch-IO 316 (217s) 0.00008220 0.0003203

Hierarch-Port 33,3333 (1.92s) 0.00016440 0.0006407

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 65/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Checkpoint time

Name C

K-Computer 14,688s

Exascale-Slim 64,000

Exascale-Fat 64,000

Large time to dump the memory

Using 1%C

Comparing with 0.1%C for exascale platforms

α = 0.3, λ = 0.98 and ρ = 1.5

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 66/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Plotting formulas – Platform: Titan

Stencil 2D Matrix product Stencil 3D

Waste as a function of processor MTBF µind

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 67/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Platform: K-Computer

Stencil 2D Matrix product Stencil 3D

Waste as a function of processor MTBF µind

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 68/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Plotting formulas – Platform: Exascale

Waste = 1 for all scenarios!!!

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 69/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Plotting formulas – Platform: Exascale

Waste = 1 for all scenarios!!!

Goodbye Exascale?!

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 69/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Plotting formulas – Platform: Exascale with C = 1, 000

Stencil 2D Matrix product Stencil 3D
E

xa
sc

al
e-

S
lim

E
xa

sc
al

e-
F

at

Waste as a function of processor MTBF µind , C = 1, 000

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 70/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Plotting formulas – Platform: Exascale with C = 100

Stencil 2D Matrix product Stencil 3D
E

xa
sc

al
e-

S
lim

E
xa

sc
al

e-
F

at

Waste as a function of processor MTBF µind , C = 100

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 71/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Simulations – Platform: Titan

Stencil 2D Matrix product

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100
M

ak
es

p
an

 (
d
ay

s)
MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k
e
s
p
a
n

(
d
a
y
s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k
e
s
p
a
n

(
d
a
y
s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

Makespan (in days) as a function of processor MTBF µind

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 72/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Simulations – Platform: Exascale with C = 1, 000

Stencil 2D Matrix product

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d

ay
s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

E
xa

sc
al

e-
S

lim

 0

 50

 100

 150

 200

 250

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 50

 100

 150

 200

 250

 300

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

E
xa

sc
al

e-
F

at

 0

 50

 100

 150

 200

 250

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 50

 100

 150

 200

 250

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

Makespan (in days) as a function of processor MTBF µind , C = 1, 000

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 73/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Simulations – Platform: Exascale with C = 100

Stencil 2D Matrix product

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d

ay
s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

E
xa

sc
al

e-
S

lim

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

E
xa

sc
al

e-
F

at

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated Daly
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

Makespan (in days) as a function of processor MTBF µind , C = 100

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 74/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 ABFT for dense linear algebra kernels

3 Checkpointing
Process checkpointing
Coordinated checkpointing
Young/Daly’s approximation

4 Probabilistic models for checkpointing
Coordinated checkpointing
Hierarchical checkpointing

5 Other techniques
Replication
Failure Prediction
Silent errors
In-memory checkpointing

6 Conclusion

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 75/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 ABFT for dense linear algebra kernels

3 Checkpointing
Process checkpointing
Coordinated checkpointing
Young/Daly’s approximation

4 Probabilistic models for checkpointing
Coordinated checkpointing
Hierarchical checkpointing

5 Other techniques
Replication
Failure Prediction
Silent errors
In-memory checkpointing

6 Conclusion

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 76/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Replication

P replica

P

State Update P replica

P

Both process the
same messages

Passive Replication Active Replication

Idea

Each process is replicated on a resource that has small chance
to be hit by the same failure as its replica

In case of failure, one of the replicas will continue working,
while the other recovers

Passive Replication / Active Replication

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 77/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Replication

P replica

P

State Update

Update
Latency

Challenges

Passive replication: latency of state update

Active replication: ordering of decision → internal additional
communications

By nature: replication → at most 50% machine efficiency

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 78/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Replication

P replica

P

Messages must be delivered
in a consistent order to all replicas

Any replica can provide an answer
(load balance)

Challenges

Passive replication: latency of state update

Active replication: ordering of decision → internal additional
communications

By nature: replication → at most 50% machine efficiency

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 78/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Process replication

• • • • • • . . . �

1 2 3 4 5 6 . . . N

⇓

•
•

•
•

•
• . . .

•
•

1 2 3 . . . nrg

Each process replicated g ≥ 2 times → replica-group

nrg = number of replica-groups (g × nrg = N)

Study for g = 2 by Ferreira et al., SC’2011

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 79/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Analogy with birthday problem

November 21st, 2011 Sixth workshop of the Joint Laboratory 7

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 80/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Analogy with birthday problem

November 21st, 2011 Sixth workshop of the Joint Laboratory 8

...

1 2 365

365/365 * 364/365 * 363/365 * … n = nrg bins, throw balls until one bin gets two balls

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 80/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Analogy with birthday problem

November 21st, 2011 Sixth workshop of the Joint Laboratory 8

...

1 2 365

365/365 * 364/365 * 363/365 * … n = nrg bins, throw balls until one bin gets two balls

Expected number of balls to throw:
Birthday(n) = 1 +

∫ +∞
0 e−x(1 + x/n)n−1dx

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 80/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Analogy with birthday problem

November 21st, 2011 Sixth workshop of the Joint Laboratory 9

...

1 2 365

365/365 * 364/365 * 363/365 * …
But second failure may hit already struck replica /

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 80/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Analogy with birthday problem

� � � � . . . �
1 2 3 4 . . . n

⇑

• • • • • • • • • • • . . .
n = nrg bins, red and blue balls

Mean Number of Failures to Interruption (bring down application)
MNFTI = expected number of balls to throw

until one bin gets one ball of each color

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 80/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Failure distribution

221218 219216 217 220215

number of processors

0

50

100

150

200

av
er

ag
e

m
ak

es
pa

n
(i

n
da

ys
)

BestPeriod-g = 2
BestPeriod-g = 1
Daly-g = 2
Daly-g = 1

(a) Exponential

221218 219216 217 220215

number of processors

0

50

100

150

200

av
er

ag
e

m
ak

es
pa

n
(i

n
da

ys
)

BestPeriod-g = 2
BestPeriod-g = 1
Daly-g = 2
Daly-g = 1

(b) Weibull, k = 0.7

Crossover point for replication when µind = 125 years

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 81/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 ABFT for dense linear algebra kernels

3 Checkpointing
Process checkpointing
Coordinated checkpointing
Young/Daly’s approximation

4 Probabilistic models for checkpointing
Coordinated checkpointing
Hierarchical checkpointing

5 Other techniques
Replication
Failure Prediction
Silent errors
In-memory checkpointing

6 Conclusion

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 82/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Framework

Predictor

Exact prediction dates (at least C seconds in advance)

Recall r : fraction of faults that are predicted

Precision p: fraction of fault predictions that are correct

Events

true positive: predicted faults

false positive: fault predictions that did not materialize as
actual faults

false negative: unpredicted faults

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 83/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Algorithm

1 While no fault prediction is available:
• checkpoints taken periodically with period T

2 When a fault is predicted at time t:
• take a checkpoint ALAP (completion right at time t)
• after the checkpoint, complete the execution of the period

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 84/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Computing the waste

1 Fault-free execution: Waste[FF] = C
T

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working

2 Unpredicted faults: 1
µNP

[
D + R + T

2

]
TimeT -C T -C Tlost T -C

Error

C C C D R C

Waste[fail] =
1

µ

[
(1− r)

T

2
+ D + R +

r

p
C

]
⇒ Topt ≈

√
2µC

1− r

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 85/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Computing the waste

3 Predictions: 1
µP

[p(C + D + R) + (1− p)C]

TimeT -C Wreg

Error Predicted failure

T -Wreg -C T -C

C C Cp D R C C

with actual fault (true positive)

TimeT -C Wreg

Predicted failure

T -Wreg -C T -C T -C

C C Cp C C C

no actual fault (false negative)

Waste[fail] =
1

µ

[
(1− r)

T

2
+ D + R +

r

p
C

]
⇒ Topt ≈

√
2µC

1− r

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 85/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Computing the waste

3 Predictions: 1
µP

[p(C + D + R) + (1− p)C]

TimeT -C Wreg

Error Predicted failure

T -Wreg -C T -C

C C Cp D R C C

with actual fault (true positive)

TimeT -C Wreg

Predicted failure

T -Wreg -C T -C T -C

C C Cp C C C

no actual fault (false negative)

Waste[fail] =
1

µ

[
(1− r)

T

2
+ D + R +

r

p
C

]
⇒ Topt ≈

√
2µC

1− r

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 85/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Refinements

Use different value Cp for proactive checkpoints

Avoid checkpointing too frequently for false negatives
⇒ Only trust predictions with some fixed probability q
⇒ Ignore predictions with probability 1− q
Conclusion: trust predictor always or never (q = 0 or q = 1)

Trust prediction depending upon position in current period
⇒ Increase q when progressing
⇒ Break-even point

Cp

p

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 86/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

With prediction windows

TimeTR-C TR-C Tlost TR-C

Error
(Regular mode)

Time

Regular mode Proactive mode

TR-C Wreg

I

TP-Cp TP-Cp TP-Cp TR-C
-Wreg

(Prediction without failure)

Time

Regular mode Proactive mode

TR-C Wreg

I

TP-Cp TP-Cp TR-C
-Wreg

Error
(Prediction with failure)

C C C D R C

C C Cp Cp Cp Cp C

C C Cp Cp Cp D R C

Gets too complicated! /

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 87/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 ABFT for dense linear algebra kernels

3 Checkpointing
Process checkpointing
Coordinated checkpointing
Young/Daly’s approximation

4 Probabilistic models for checkpointing
Coordinated checkpointing
Hierarchical checkpointing

5 Other techniques
Replication
Failure Prediction
Silent errors
In-memory checkpointing

6 Conclusion

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 88/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Silent errors

Instantaneous error detection ⇒ fail-stop failures,
e.g. resource crash

Silent errors (data corruption) ⇒ detection latency

TimeXe Xd

Error Detection

Error and detection latency

Last checkpoint may have saved an already corrupted state

Even when saving k checkpoints: which one to roll back to?

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 89/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Coupling checkpointing and verification

Verification mechanism of cost V

Repeat periodic pattern:

Timew w w w w

V C V V V V V C

Small cost V : 5 verifications for 1 checkpoint

Timew w w w w

V C C C C C V C

Large cost V : 5 checkpoints for 1 verification

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 90/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 ABFT for dense linear algebra kernels

3 Checkpointing
Process checkpointing
Coordinated checkpointing
Young/Daly’s approximation

4 Probabilistic models for checkpointing
Coordinated checkpointing
Hierarchical checkpointing

5 Other techniques
Replication
Failure Prediction
Silent errors
In-memory checkpointing

6 Conclusion

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 91/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Motivation

Checkpoint transfer and storage
⇒ critical issues of rollback/recovery protocols

Stable storage: high cost

Distributed in-memory storage:

Store checkpoints in local memory ⇒ no centralized storage
, Much better scalability
Replicate checkpoints ⇒ application survives single failure
/ Still, risk of fatal failure in some (unlikely) scenarios

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 92/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Double checkpoint algorithm

1

1

d q s

f

f

P

Local checkpoint
done

Remote checkpoint
done

Period
done

Node p

Node p'

Platform nodes partitioned into pairs

Each node in a pair exchanges its checkpoint with its buddy

Each node saves two checkpoints:
- one locally: storing its own data
- one remotely: receiving and storing its buddy’s data

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 93/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Failures

1

1

d q s

f

f

P

Node p

Node p'

1

1

d q

f

f

tlost

Checkpoint of
p

Checkpoint of
p'

Risk Period

Node to replace p

q

f 1

tlostD R

After failure: downtime D and recovery from buddy node

Two checkpoint files lost, must be re-sent to faulty processor

Best trade-off between performance and risk?

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 94/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Failures

1

1

d q s

f

f

P

Node p

Node p'

1

1

d q

f

f

tlost

Checkpoint of
p

Checkpoint of
p'

Risk Period

Node to replace p

q

f 1

tlostD R

After failure: downtime D and recovery from buddy node

Two checkpoint files lost, must be re-sent to faulty processor

Application at risk until complete reception of both messages

Best trade-off between performance and risk?

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 94/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Outline

1 Introduction
Large-scale computing platforms
Faults and failures

2 ABFT for dense linear algebra kernels

3 Checkpointing
Process checkpointing
Coordinated checkpointing
Young/Daly’s approximation

4 Probabilistic models for checkpointing
Coordinated checkpointing
Hierarchical checkpointing

5 Other techniques
Replication
Failure Prediction
Silent errors
In-memory checkpointing

6 Conclusion

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 95/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Conclusion

Multiple approaches to Fault Tolerance

Application-specific FT will always provide more benefits

General-purpose FT will always be needed

Not every computer scientist needs to learn how to write
fault-tolerant applications
Not all parallel applications can be ported to a fault-tolerant
version

Faults are a feature of the platform. Why should it be the role
of the programmers to handle them?

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 96/ 98

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Conclusion

Software/hardware techniques to reduce checkpoint, recovery,
migration times and to improve failure prediction

Multi-criteria scheduling problem
execution time/energy/reliability
add replication
best resource usage (performance trade-offs)

Need combine all these approaches!

Several challenging algorithmic/scheduling problems ,

Extended version of this talk: see SC’12 or ICS’13 tutorial with
Thomas Hérault. Available at

http://graal.ens-lyon.fr/~yrobert/

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 97/ 98

http://graal.ens-lyon.fr/~yrobert/

Introduction ABFT for dense linear algebra kernels Checkpointing Probabilistic models for checkpointing Other techniques Conclusion

Thanks

INRIA & ENS Lyon

Anne Benoit

Frédéric Vivien

PhD students (Guillaume Aupy, Dounia Zaidouni)

UT Knoxville

George Bosilca

Aurélien Bouteiller

Jack Dongarra

Thomas Hérault (joint tutorial at SC’12 & ICS’13)

Others

Franck Cappello, UIUC-Inria joint lab

Henri Casanova, Univ. Hawai‘i

Yves.Robert@ens-lyon.fr Fault-tolerance for HPC 98/ 98

	Introduction
	Large-scale computing platforms
	Faults and failures

	ABFT for dense linear algebra kernels
	Checkpointing
	Process checkpointing
	Coordinated checkpointing
	Young/Daly's approximation

	Probabilistic models for checkpointing
	Coordinated checkpointing
	Hierarchical checkpointing

	Other techniques
	Replication
	Failure Prediction
	Silent errors
	In-memory checkpointing

	Conclusion

